Publications

  1. Nadejda-Beliakova-Bethell, Kathirvel Maruthai, Ruijie Xu, Liliana C.M. Salvador, Ankita Garg (2022). Monocytic-Myeloid Derived Suppressor Cells Suppress T-Cell Responses in Recovered SARS CoV2-Infected Individuals. Front. Immunol. June 2022; Volume 13: Article 894543. Doi: 10.3389/fimmu.2022.894543.
  2. Asante R KamkwalalaAnkita GargUpal RoyAvery MatthewsJose Castillo-MancillaJordan E LakeGiada SebastianiMichael YinTodd T BrownAngela R KamerDouglas A JabsRonald J EllisMarta BoffitoMeredith GreeneSarah SchmalzleEugenia SieglerKristine M ErlandsonDavid J Moore. Current Considerations for Clinical Management and Care of People with HIV: Findings from the 11th Annual International HIV and Aging Workshop (2021).AIDS Res Hum Retroviruses, Nov; 37(11): 807-820. https://pubmed.ncbi.nlm.nih.gov/34405689/
  3. Priyanka Namdev, Shiv Patel, Brandi Sparling, Ankita Garg (2021) Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals with Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium tuberculosis. Front. Immunol. April 2021; Volume 12: Article 647019. Doi: 10.3389/fimmu.2021.647019. https://pubmed.ncbi.nlm.nih.gov/33995365/
  4. Ritesh Singh, Mouli Chakraborty, Anuradha Gautam, S.K. Halder, Jamie Barber, Ankita Garg (2021) Residual immune activation in HIV-infected individuals expands monocytic-myeloid derived suppressor cells. Cell Immunol, Apr; 362: 104304. Doi: 10.1016/j.cellimm.2021.104304.Epub 2021 Feb 10. https://pubmed.ncbi.nlm.nih.gov/33610024/
  5. Ankita Garg (2021) Analysis of Antimicrobial Activity of Monocytc Myeloid-Derived Suppressor Cells in Infection with Mycobacterium tuberculosis and Human Immunodeficiency Virus. Methods Mol Bio, 2236: 115- 127. Doi: 10.1007/978-1-0716-1060-2_11. https://pubmed.ncbi.nlm.nih.gov/33237545/
  6. Anca Dorhoi , Leigh A Kotzé , Jay A BerzofskyYongjun SuiDmitry I Gabrilovich , Ankita Garg , Richard HafnerShabaana A KhaderUlrich E SchaibleStefan He KaufmannGerhard WalzlManfred B Lutz, Robert N Mahon, Suzanne Ostrand-RosenbergWilliam BishaiNelita du Plessis(2020). Therapies for Tuberculosis and AIDS: Myeloid Derived Suppressor Cells in Focus. J Clin Invest, Jun 1; 130 (6): 2789-2799.doi: 10.1172/JCI136288. https://pubmed.ncbi.nlm.nih.gov/32420917/
  7. Garg A, Gianella S, Nakazawa M, Trout R, Spector SA (2019). Association of Cytomegalovirus DNA and Immunologic Markers of Cardiovascular Disease. Open Forum Infect Dis, Mar 11; 6 (5): ofz113. doi: 10.1093/ofid/ofz113. https://www.ncbi.nlm.nih.gov/pubmed/31139667/
  8. Garg A & Spector SA (2019). Myeloid derived suppressor cells (MDSC) from HIV-infected individuals are defective in innate immunity to Mycobacterium tuberculosis this increasing the risk of tuberculosis. J Immunol 202 (1 Supplement): 62.13. https://www.jimmunol.org/content/202/1_Supplement/62.13
  9. Garg A & Spector SA (2017). HIV myeloid derived suppressor cells (MDSC) are defective in innate immunity to Mycobacterium bovis BCG. J Immunol 198 (1 Supplement): 68.2. https://www.jimmunol.org/content/198/1_Supplement/68.2/
  10. Garg A*, Rodney Trout, Stephen A Spector* (2017). HIV Myeloid Derived Suppressor Cells Inhibit Cytomegalovirus Inflammation through B7-H4 and IL-27. Scientific Reports (Mar 24; 7: 44485. Doi:10.1038/srep44485. *Corresponding Author https://www.ncbi.nlm.nih.gov/pubmed/28338007/
  11. Dubey S* and Garg A* (2016). Releasing the Brakes in Cancer- Invited Review. J Bioanal Biomed 8:017-022. Doi: 10.4172/1948-593X.1000147 *Corresponding Author. https://www.omicsonline.org/open-access/releasing-the-brakes-in-cancer-1948-593X-1000147.php?aid=70795/
  12. Garg A, P Rawat, Stephen A Spector (2015). IL-23 produced by myeloid dendritic cells contribute to T cell dysfunction in HIV. J Infect Dis 211(5) 755-68 (doi: 10.1093/infdis/jiu523. Epub 2014 Sep 18). https://www.ncbi.nlm.nih.gov/pubmed/25234720/
  13. Garg A & Stephen A Spector (2014).  HIV gp120 induced expansion of Myeloid Derived Suppressor Cells is dependent on IL-6 and suppresses immunity. J Infect Dis 209(3) 441-51 (doi: 10.1093/infdis/jit469. EPub2013 Sep 1.). https://www.ncbi.nlm.nih.gov/pubmed/23999600
  14. Dhiman R, Periasamy S, Barnes PF,   Garg   A,   Paidipally   P,   Barnes   AF, Tvinnereim A, Vankayalapati R (2012).  NK1.1+ cells and IL-22 regulate vaccine- induced protective immunity against challenge with Mycobacterium tuberculosis.  J Immunol 189(2):  897-905. https://www.ncbi.nlm.nih.gov/pubmed/22711885
  15. Garg A, Barnes PF, Quiroga MF, Roy S, Wu S, GarcÃa VE, Weis SE and Vankayalapati R (2008). Mannose-capped lipoarabinomannan- and Prostaglandin E2- dependent expansion of regulatory T cells in human M tuberculosis infection. Eu J Immunol 38(2): 459-469. https://www.ncbi.nlm.nih.gov/pubmed/18203140
  16. Roy S, Barnes PF, Garg A, Wu S, Cosman D and Vankayalapati R (2008). NK cells lyse T regulatory cells that expand in response to an intracellular pathogen.  J Immunol 180:  1729-1736. https://www.ncbi.nlm.nih.gov/pubmed/18209070
  17. Garg A, Barnes P, Porgador A, Roy S, Wu S, Griffith DE, Girard WM, Rawal N, Shetty S, and Vankayalapati R (2006). Vimentin expressed on M tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177: 6192- 6198. https://www.ncbi.nlm.nih.gov/pubmed/17056548
  18. Garg A, Srivastava S, Ayyagari A, Katoch VM and Dhole TN (2006).embB gene mutations   associated with ethambutol resistance in Indian strains of M tuberculosis. Current Science 91:  1512-1517. https://www.jstor.org/stable/24093851?seq=1
  19. Srivastava S, Garg A, Ayyagari A, Nyati KK, Dhole TN and Dwivedi SK (2006). Nucleotide polymorphism associated with ethambutol resistance in clinical isolates of M tuberculosis. Current Microbiology 53: 401-405. https://www.ncbi.nlm.nih.gov/pubmed/16972132
  20. Mishra KK, Srivastava S, Dwievdi PP, Garg A and Ayaygari A (2006). Antibiotic susceptibility of H. pylori strains by disc diffusion & E-test in India. Current Microbiology 53:  329-334. https://www.ncbi.nlm.nih.gov/pubmed/16972131
  21. Ayyagari A, Agarwal J, Garg A (2003).  Antibiotic Associated Diarrhea:  Infectious Causes Ind J Med Microbiol 21(1): 6-11. https://www.ncbi.nlm.nih.gov/pubmed/17642966
  22. Vankayalapati R, Garg A, Porgador A, Griffith D, Klucar P, Safi H, Girard WM, Cosman D, Spies T and Barnes PF (2005). Role of Natural Killer cell activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 175:4611-4617. https://www.ncbi.nlm.nih.gov/pubmed/16177106
  23. R Das, K Katoch, GPS Jadaun, P Gupta, VD Sharma, B Malhotra, A Garg, A Ayyagari, DS Chauhan, HB Singh, P Yadav and VM Katoch (2006). Studies on mutations in embB locus in Indian clinical isolates of M tuberculosis having high degree of ethambutol resistance. Current Science 91: 923-925. https://www.jstor.org/stable/24094291?seq=1
  24. Mukhopadhyay C, Garg A and Ayyagari A (2004). First   documented cure of a suggestive exogenous reinfection in polymyositis with same but multidrug resistant M. tuberculosis. BMC Infectious Diseases, 4:63. https://www.ncbi.nlm.nih.gov/pubmed/15617569
  25. Garg A and Ayyagari A (2002).  Reference Mutations in embB locus among Korean   Clinical Isolates of M tuberculosis resistant to Ethambutol. Yonsei Med J 42:556-556. https://www.ncbi.nlm.nih.gov/pubmed/12205749

GENE BANK SUBMISSIONS:

  1. Garg A, Katoch VM, Dwivedi PP, Srivastava S   and   Ayyagari   A.   EmbB mutation in low level ethambutol resistant M. tuberculosis. Accession Numbers: AY 198118, AY 198119 and AY 198120.
  2. Garg A, Katoch VM, Ayyagari A. Molecular mechanism of ethambutol resistance in M. tuberculosis.  Accession numbers:  AJ579703, AJ579704, AJ579705, AJ579706 and AJ579707

%d bloggers like this: